Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 60(12): 6634-6641, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33259207

RESUMO

Blocking the interaction between the Gßγ protein and the glycine receptor (GlyR) has emerged as a promising pharmacological strategy to treat acute alcohol intoxication by inhibiting ethanol potentiation on GlyR. M554 is a recently discovered small molecule capable of binding to Gßγ with potent in vitro and in vivo inhibitory activity. This compound has been tested as a mixture of diastereomers, and no information is available concerning the stereospecific activity of each species, which is critical to pursue efforts on lead optimization and drug development. In this work, we explored the differential activity of four M554 stereoisomers by in silico molecular dynamics simulations and electrophysiological experiments. Our results revealed that the (R,R)-M554 stereoisomer is a promising lead compound that inhibits ethanol potentiation of GlyR.


Assuntos
Etanol , Receptores de Glicina , Estereoisomerismo
2.
Nanomedicine (Lond) ; 15(28): 2771-2784, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33073670

RESUMO

The purpose of this study was to design a polyamidoamine (PAMAM)-based nanovector for the efficient delivery of methotrexate to U87 glioma cells. To this end, 0-100% acetylated PAMAM dendrimers of the fourth generation were synthesized and evaluated using drug encapsulation measurements, molecular dynamics simulations, neurotoxicity assays and neuronal internalization experiments. The best system was tested as a nanovector for methotrexate delivery to U87 glioma cells. The authors found that 25% acetylated PAMAM dendrimers of the fourth-generation combine low intrinsic toxicity, large drug complexation capacity and efficient internalization into hippocampal neurons. Nanovector complexation enhances the cytotoxic response of methotrexate against U87 glioma cells compared with free drug solutions. In conclusion, 25% acetylated PAMAM dendrimers of the fourth-generation increase drug uptake by glioma cells and thereby act as efficient nanovectors for methotrexate delivery.


Assuntos
Dendrímeros , Glioma , Dendrímeros/uso terapêutico , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Humanos , Metotrexato/uso terapêutico , Poliaminas
3.
J Chem Inf Model ; 60(6): 3204-3213, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32286822

RESUMO

Microtubules (MT) are cytoskeletal polymers of αß-tubulin dimers that play a critical role in many cellular functions. Diverse antimitotic drugs bind to MT and disrupt their dynamics acting as MT stabilizing or destabilizing agents. The occurrence of undesired side effects and drug resistance encourages the search for novel MT binding agents with chemically diverse structures and different interaction profiles compared to known active compounds. This work reports the rational discovery of seven novel MT stabilizers using a combination of molecular modeling methods and in vitro experimental assays. Virtual screening, similarity filtering, and molecular mechanics generalized Born surface area (MM/GBSA) binding free energy refinement were employed to select seven potential candidates with high predicted affinity toward the non-taxoid site for MT stabilizers on ß-tubulin. MD simulations of 150 ns on reduced MT models suggest that candidate compounds strengthen the longitudinal interactions between tubulin dimers across protofilaments, which is a primary molecular mechanism of action for known MT stabilizers. In vitro MT polymerization assays confirmed that all candidates promote MT assembly at concentrations of >50 mM and exhibit noncompetitive MT polymerization profiles when cotreating with Taxol. Preliminary HeLa cell viability assays revealed a moderate cytotoxic effect for the compounds under study at 100 µM concentration. These results support the validity of our rational discovery strategy and the use of molecular modeling methods to pursue the search and optimization of new MT targeting agents.


Assuntos
Excipientes , Paclitaxel , Células HeLa , Humanos , Microtúbulos , Paclitaxel/farmacologia , Tubulina (Proteína)
4.
J Chem Inf Model ; 60(2): 995-1004, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31876421

RESUMO

Neuroligin-1 (NL1) is a postsynaptic cell adhesion protein that plays a crucial role in synapsis and signaling between neurons. Due to its clustered distribution in synaptic clefts, NL1 appears as a novel potential site for synaptic targeting purposes. In this work, in silico protein topography analysis was employed to identify two prospective binding sites on the NL1 dimer surface in the 2:2 synaptic adhesion complex with ß-neurexin (PDB code 3B3Q ). Receptor-based rational design, cell-penetrating capability prediction, molecular docking, molecular dynamics simulations, and binding free energy calculations were used to identify five heptapeptides candidates with favorable predicted profiles as non cell-penetrating NL1-binding agents. Preliminary in vitro colocalization assays with NL1-transfected HEK 293 cells confirmed that peptides remain in the extracellular space without inducing detectable changes in cell morphology. The highest NL1-colocatization capability was attained by the peptide ADEAIVA, which appears as a promising candidate for the future development of specific NL1-targeting systems as part of synapse-directed therapies against central nervous system diseases.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Desenho de Fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sítios de Ligação , Moléculas de Adesão Celular Neuronais/química , Simulação por Computador , Células HEK293 , Humanos , Modelos Moleculares , Peptídeos/química , Multimerização Proteica , Estrutura Quaternária de Proteína
5.
Nanomaterials (Basel) ; 8(1)2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29295581

RESUMO

One of the most studied nanocarriers for drug delivery are polyamidoamine (PAMAM) dendrimers. However, the alterations produced by PAMAM dendrimers in neuronal function have not been thoroughly investigated, and important aspects such as effects on synaptic transmission remain unexplored. We focused on the neuronal activity disruption induced by dendrimers and the possibility to prevent these effects by surface chemical modifications. Therefore, we studied the effects of fourth generation PAMAM with unmodified positively charged surface (G4) in hippocampal neurons, and compared the results with dendrimers functionalized in 25% of their surface groups with folate (PFO25) and polyethylene glycol (PPEG25). G4 dendrimers significantly reduced cell viability at 1 µM, which was attenuated by both chemical modifications, PPEG25 being the less cytotoxic. Patch clamp recordings demonstrated that G4 induced a 7.5-fold increment in capacitive currents as a measure of membrane permeability. Moreover, treatment with this dendrimer increased intracellular Ca2+ by 8-fold with a complete disruption of transients pattern, having as consequence that G4 treatment increased the synaptic vesicle release and frequency of synaptic events by 2.4- and 3-fold, respectively. PFO25 and PPEG25 treatments did not alter membrane permeability, total Ca2+ intake, synaptic vesicle release or synaptic activity frequency. These results demonstrate that cationic G4 dendrimers have neurotoxic effects and induce alterations in normal synaptic activity, which are generated by the augmentation of membrane permeability and a subsequent intracellular Ca2+ increase. Interestingly, these toxic effects and synaptic alterations are prevented by the modification of 25% of PAMAM surface with either folate or polyethylene glycol.

6.
Mol Pharm ; 13(10): 3395-3403, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27556289

RESUMO

Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.


Assuntos
Dendrímeros/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Animais , Células Cultivadas , Endocitose/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...